22 research outputs found

    Review of low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds

    Get PDF
    This report presents a literature review of the state of the art of sensor based monitoring of air quality of benzene and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considered commercially available sensors, including, PID based sensors, semiconductor (resistive gas sensor) and portable on-line measuring devices (sensor arrays). The bibliographic collection includes the following topics: sensor description, field of application in fixed, mobile, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions.JRC.C.5-Air and Climat

    Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation

    Get PDF
    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H2, ammonia and benzene) using randomized gas exposures

    Siloxane treatment of metal oxide semiconductor gas sensors in temperature-cycled operation – sensitivity and selectivity

    Get PDF
    The impact of a hexamethyldisiloxane (HMDSO) treatment on the response of doped SnO2 sensors is investigated for acetone, carbon monoxide and hydrogen. The sensor was operated in temperature cycles based on the DSR concept (differential surface reduction). According to this concept, the rate constants for the reduction and oxidation of the surface after fast temperature changes can be evaluated and used for quantification of reducing gases as well as quantification and compensation of sensor poisoning by siloxanes, which is shown in this work. Increasing HMDSO exposure reduces the rate constants and therefore the sensitivity of the sensor more and more for all processes. On the other hand, while the rate constants for acetone and carbon monoxide are reduced nearly to zero already for short treatments, the hydrogen sensitivity remains fairly stable, which greatly increases the selectivity. During repeated HMDSO treatment the quasistatic sensitivity, i.e. equilibrium sensitivity at one point during the temperature cycle, rises at first for all gases but then drops rapidly for acetone and carbon monoxide, which can also be explained by reduced rate constants for oxygen chemisorption on the sensor surface when considering the generation of surface charge

    Performance Evaluation of Low-Cost BTEX Sensors and Devices within the EURAMET Key-VOCs Project

    Get PDF
    The KEY-VOCs project is a EURAMET joint research project focused on key Volatile Organic Compounds (VOCs) in air. One of its activities is the evaluation of sensors-based measurement systems. In Europe, the monitoring of benzene in ambient air is mandatory as set by the European Directive for air quality (AQD) [1]. This Directive states that the reference method of measurement shall consist of active or on-line sampling followed by gas chromatography [2]. These methods are time consuming, expensive to implement and not easily portable prohibiting more local estimation of the population exposure. However, the AQD allows using indicative measurements with higher uncertainty than those of the reference methods. Sensor systems are good candidates for indicative methods with the additional ability of near-to real-time measurements

    Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds

    Get PDF
    This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions

    Random gas mixtures for efficient gas sensor calibration

    Get PDF
    Applications like air quality, fire detection and detection of explosives require selective and quantitative measurements in an ever-changing background of interfering gases. One main issue hindering the successful implementation of gas sensors in real-world applications is the lack of appropriate calibration procedures for advanced gas sensor systems. This article presents a calibration scheme for gas sensors based on statistically distributed gas profiles with unique randomized gas mixtures. This enables a more realistic gas sensor calibration including masking effects and other gas interactions which are not considered in classical sequential calibration. The calibration scheme is tested with two different metal oxide semiconductor sensors in temperature-cycled operation using indoor air quality as an example use case. The results are compared to a classical calibration strategy with sequentially increasing gas concentrations. While a model trained with data from the sequential calibration performs poorly on the more realistic mixtures, our randomized calibration achieves significantly better results for the prediction of both sequential and randomized measurements for, for example, acetone, benzene and hydrogen. Its statistical nature makes it robust against overfitting and well suited for machine learning algorithms. Our novel method is a promising approach for the successful transfer of gas sensor systems from the laboratory into the field. Due to the generic approach using concentration distributions the resulting performance tests are versatile for various applications

    Percolation transition in the gas-induced conductance of nanograin metal oxide films with defects

    Get PDF
    We use Monte-Carlo Simulations to study the conductance switching generated by gas-induced electron trapping/-releasing in films of sintered metal oxide nanoparticles by using a site-bond percolation model. We explore the possibilities of gas sensors based on these mechanisms. In our study, we model films of different thicknesses where the conductance values of the grains (sites) and of the contacts (bonds) between these grains depend on the surface density Nr of adsorbed gas molecules from the ambient atmosphere. Below a critical density Nr=Nr,c , the system is insulating due to the interruption of current flow, either through the connecting bonds or through the grain interior. This leads to two competing critical gas covering thresholds N(bond)r,c and N(site)r,c , respectively, that separate the insulating from the conducting phase. For N(site)r,c>N(bond)r,c , the characteristic curve of monodisperse sensors shows a noticeable jump from zero to a finite conductance at Nr=N(site)r,c , while for polydisperse sensors site percolation effects modify the jump into a steep increase of the characteristic curve and thus lead to an enhanced sensitivity. For N(site)r,c<N(bond)r,c , both mono- and polydisperse systems follow the same curves that show a smoother characteristic increase ∝(Nr−N(bond)r,c)2 which reveals that, despite the occurrence of an inherent bond percolation effect close to Nr,c , the increase of the bonds is the dominating effect

    UV-Assisted Gate Bias Cycling in Gas-Sensitive Field-Effect Transistors

    Get PDF
    Static and dynamic responses of a silicon carbide field-effect transistor gas sensor have been investigated at two different gate biases in several test gases. Especially the dynamic effects are gas dependent and can be used for gas identification. The addition of ultraviolet light reduces internal electrical relaxation effects, but also introduces new, temperature-dependent effects

    Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to?

    Get PDF
    Monitoring of volatile organic compounds (VOCs) is of increasing importance in many application fields such as environmental monitoring, indoor air quality, industrial safety, fire detection, and health applications. The challenges in all of these applications are the wide variety and low concentrations of target molecules combined with the complex matrix containing many inorganic and organic interferents. This paper will give an overview over the application fields and address the requirements, pitfalls, and possible solutions for using low-cost sensor systems for VOC monitoring. The focus lies on highly sensitive metal oxide semiconductor gas sensors, which show very high sensitivity, but normally lack selectivity required for targeting relevant VOC monitoring applications. In addition to providing an overview of methods to increase the selectivity, especially virtual multisensors achieved with dynamic operation, and boost the sensitivity further via novel pro-concentrator concepts, we will also address the requirement for high-performance gas test systems, advanced solutions for operating and read-out electronic, and, finally, a cost-efficient factory and on-site calibration. The various methods will be primarily discussed in the context of requirements for monitoring of indoor air quality, but can equally be applied for environmental monitoring and other fields

    A High Temperature Capacitive Humidity Sensor Based on Mesoporous Silica

    Get PDF
    Capacitive sensors are the most commonly used devices for the detection of humidity because they are inexpensive and the detection mechanism is very specific for humidity. However, especially for industrial processes, there is a lack of dielectrics that are stable at high temperature (>200 °C) and under harsh conditions. We present a capacitive sensor based on mesoporous silica as the dielectric in a simple sensor design based on pressed silica pellets. Investigation of the structural stability of the porous silica under simulated operating conditions as well as the influence of the pellet production will be shown. Impedance measurements demonstrate the utility of the sensor at both low (90 °C) and high (up to 210 °C) operating temperatures
    corecore